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Abstract

Global'changes are causing breadle shifts in vegetation communities worldwide,
including coastal habitats where the borders betwsgmgroves and salt marsh ardlirx.
Coastal habitats provide numerous ecosystem services of high economic value, but the
consequences of variationnmangrove cover are poorly known. We experimentally manipulated
mangrove cover in large plots to test a set of linked hypotheses regarding the effects of changes
in mangrovecoveiWe found that changesimangrove cover had strong effects on
microclimatesplant communifysediment accretion, soil organic content, and bird abundance
within two years At higher mangrove cover, wind speed declined and light interception by
vegetation increased. Air and soil temperatures had hump-shaped relationships with mangrove
cover. The cover of salt marsh plants decreaséigher mangrove cover. Wrack cover, the
distance that wrack was distributed from the water’s edge, and sediment accretion decreased at
higher mangrove cover. Soil organic content increased with mangrove Waaing bird
abundance decreasatihighemrmangrove covemany of these relationships were rlomear,
with the greatest effects whemangrove cover varied from zero to intermediate values, and
lesser effects when mangrove cover varied from intermediate to high.vBéumegoral and
spatial variation ilmeasuredariables often peaked at intermediate mangrove cover, with
ecologicalkconsequences that are largely unexplored. Because different processes varied in
different ways with mangrove cover, the “optimum” cover of mangroves from a societal point of

view will depend on which ecosystem services are most desired.
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I ntroduction

Global changes are causingadscale shifts in vegetation communities worldwide
(Chen et al. 2011). Given the magnitude and rate of global change, understanding how
consequengcological regime shiftwill affect ecosystem properties and functions is critical for
managing-natural systems (Ellison et al. 2005, Laurance et al. 2011, Kominoski et al. 2013). In
particular shifts among dominant plant species with markedly different traits are likely to alter
ecosystem, properties afhctions.An example is the encroachment of woody plants into
ecosystems‘deminated by lestature graminoids and herbs (Van Auken 2000, Frelich and Reich
2010). In grasslands and savanvaspdy encroachment catter albedo and temperatures
(Lustenhouwer et al. 2012, D'Odorico et al. 2013) and redyce species diversifiRatajczak et
al. 2012) woody encroachment in coastal systems is létsty to altergeomorphological
processes.and.seedling recruitment (Balke et al. 2011, Peterson andlBeB&i@e et al. 2013).
Moreover,woody encroachment caiter the quality and the quantity of basal carbon (C)
sources (Jackson et al. 2002, McKinley and Blair 2008), and thus may both drive changes in
herbivore and detritivore species, and alter the flow of C through green and brown food webs
(Holmer and Olsen 2002, Byseet al. 2012, Dijkstra et al. 2013chrama et al. 2012).

Coastal'wetlandprovide numerous ecosystem services of high economic value
(Costanza et al. 1997, Costanza et al. 2008, Barbier et al), 0t Are threatened by global
changes in climateising sea leved, increasing nutrient auability, land-use change and
overfishing, (Silliman et al. 2009, Kirwan et al. 2010, Deegial. 2012) Shifts incoastal
foundatien.species include the spread of Phragmirtghie United States (Bertness et al. 2002,
King et al. 2007, Meyerson et al. 2009), worldwide invasions of Spartina species into new
geographicregions (Strong and Ayres 2013), and the encroachment of mangroves into salt
marshes'worldwle (Cavanaugh et al. 2014, Saintilan et al. 20THA§ effects on ecosystem
services of Phragmitesnd Spartina encroachment into mudflats or stands of native vegetation
have been extensively studied (e.g. Windham and Ehrenfeld 2003, Gratton and Denno 2005,
Grosholz et al. 2009, Li et al. 2009, Zhang e®all0), but few of the effects of mangrove cover

changes have beexplicitly quantified.
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The geographic border between mangroves and salt marsh is dynamic on a decadal scale.
In the United Statesdck mangrovesAvicennia germinans) periodically expand from relict
populations into salt marshes during periods with warm winters, and rapdbak during
periods with severe freezes (Sherrod and McMillan 1985, McMillan and Sherrod 198)S
et al. 2006,.Cavanaugh et al. 2014). In Texas, for example, mangrove cover increased by 74 %
between 1990.and 2010 (Armitage et al. 2015). With increasing winter temperatures, black
mangroves arepredicted to replace salt marshes throughout much of the Gulf Coashitéthe U
States within'this century (Osland et al. 2013). Wetlack an adequate understanding of how
increases or decreases in mangrove cavleaffect coastal ecological processes and ecosystem

functions.

Altheugh, some previous studies have examined the effects of different foundation
species (including mangrownd salt marsh vegetation) on ecological processes in coastal
habitats, these studies usually rely on comparisons between areas dominated by different species
(Bloomfield and Gillanders 2005, Perry and Mendelssohn 2009, Comeaux et al. 2012, Bianchi et
al. 2013, Hansen and Nestlerode 2013). This work has been foundational in suggesting possible
effects ofmangrove cover changes, but the comparative approach risks confounding effects of
different vegetation types with effects of differing abiotic conditions that promoted the different
vegetationttypes (Pinsky et al. 2013). Given this concern, manipulative experiments are better

suited to rigorously identifying the effects of mangrove cover chakdiésoq et al. 2010).

We experimentallymanipulaéd mangrove covein 10 plots at a relatively large spatial
scale (24nx%.42 m plots) to test a set of linked hypotheses about how changes in mangrove
cover might affececosystenproperties and functions of a coastal wetldngher mangrove
cover and woody stem density (1) affeaticroclimate byncreasing shading and decreasing
wind speed, whiclaffecs light availability and temperature, and theraisdiates both plant
community composition and structure; (2) favors higher accretion rates at the water’s edge by
enhancing.wrack (floating algae and leaf litter) accumulation; (3) increases soil organic content
due to increased litter accumulatiand atmospheric deposition; and (4) decreases wading bird
abundance in the wetlands. All these changes induced by chamgasgrove cover directly
affect ecosystem services, including shoreline protection, support of higher trophic levels and

carbon storage, but quantifying these ecosystem services is beyond the scope of this paper.
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M ethods
Sudy site and experimental plots

In 2012, ve demarcateten large plotseach 42n (perpendicular tthewaters edge) x
24 m (parallel'witithewaters edge), on Harbor Island, Port Aransas, TX (27.86°N, 97.08°W;
Appendix/S1: Figre S1 and S2). The front edge of each plot faced the Lydia Ann shipping
channel. Thelpts were initially dominated by black mangrove, Avicennia germinangh
~10% cover ofkalt marsh plants, including Batis maritira perennial succulefalicornia
depressa (Sensu USDA 2015), Salicornia bigelovand Spartina alterniflora. In JulySeptember
2012, nangrove plants were thinned by clipping aboveground mangrove biomass from
appropriate numbeis 3m x 3m cells (in totahere were 8x14E12 cells in each experimental
plot; eachreellwas either clearefimangrove®r left intact) to create plots ranging from 0 % to
100 % mangroeve cover (0%, 11%, 22%, 33%, 44%, 55%, 66%, 77%, 88% and 100%).
Aboveground mangrove biomass was removed from the clipped areas to accelerate the transition
from mangrove, to marsh, and composted at the study site away from the expehoéental
Cover teatments were maintained every 3-4 monitists were arrayed in three groups, with a

wide range-of:mangrove densities represented ing@acip (Appendix S1: Figre S1).

Microclimateé monitoring

In each plot, we set up a weather statiarthe centeline perpendicular tthe wateis
edge and =1fraway from the wat&r edge. A temperature was measuraidl m and 0.5
above the'ground every 10 minytasing HOBO U23-002 temperature loggers (Onset
Computer Corporation, Bourne, MA, USA); wind speed and wind direateye measured at
1.5 m aboveground every 5 minutesng Onset 3WSA-M003 wind speed sensors and Onset S-
WDA-MB03.wind direction sensors (Onset Computer Corporation, Bourne, MA, USA).
Mangrove height declined from ~2.5 m at the water's edge to 1 m at the back of the plots, such
that, at the'location of the weather stations, the upper air temperature sensor was within the upper
part of the'mangrove canopy, and the wind speed sensor was at or just above the mangrove
canopy. Wind speed data wdileeredto analyze only periods when the wind was blowing into
the plots from the water (defined as a range of 180 dgg&mktemperature was measud
depth of 5 cm every 5 minutes, using Ons@MB-M006 temperature sensors (Onset Computer

Corporation, Bourne, MA, USAJ-or microclimate measurements, we calcul@4ddaily
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average values and standard deviations (SD) for each experimental plot for the period from
September 10, 2012 to August 20, 2013.

Plot survey

We established two continuous transelstsugh each experimental plot, running from
the front (the water'edge) to the back of the plot. Each transect consisted of 42 contiguous 1 m
x 1 m subplotsWe surveyed the plant community composition in eactpklby visually
estimating the"percebver of each plant species in June 2012 (before the mangrove cover
manipulation, and in August 2014 (after the mangrove cover manipulatia)calculated plot
mean BrayCurtis dissimilarity for the plant community based on plant percentage cover within
the sampling quadrats in each experiment pla.ddlected 8 soil coresI0 cm depth) along
the twotransects in each plot (4 oores alog each transect attervals of 610 m) to measure
soil organic matter conteimt June 2012 (before the mangrove cover manipulation) and in June
2014 (after.thenangrove cover manipulation). Soil organic matter content was determined by
the combustion mhbd (USDA 2004). In May 2013, we measured light intensity (SunScan
Canopy Analysis System SS1, Deltdevices Ltd, Cambridge, UK) above the canopy and on
the soil'surface in each syot along théwo transects in eaghlot, and we calculated light
interception”by vegetation for each spibt using the formula: light interception by vegetation =
1- (lightintensity at the soil surfaddight intensity abovéhe canopy) X100%. In August 2014,
we surveyed percesge cover of wrack (deposit§ plant leaves and rhizomes, seagrass leaves
and rhizomespand algai@ each suiplot along the two transescin each plot, and we recorded
the wrack distribution range (i.e., the location of the wrack deposit farthest from the water’s

edge) for each transect.
Sediment-aceretion

We established four feldspar accretion plots (+0.% 0.5 m) in each of the ten
experimentalplots oNlarch7 and 8, 2014, to determine surface accretion above a marker
horizon (Cahoon and Turner 1989). Accretion plots were divided equally between cells with
mangroves present and mangroves removed except@xpeemental plots witB% and 100%
mangrove cover, where only one type of cell was present. We cored the accretion plots and

measured the accretion above the feldspar marker at 3 points after 372 days (Thgdarge
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measurements within each accretion plot were averaged, and total plot accretion rates were
determined as the sum of the average accretion of each vegetation type (mangroves present or
removed) multiplied by the proportion of that vegetation type in each plot. Data were normalized

to represent mm of accretion per year.
Bird density

Birds'were visually counted in each plot in the morning before any other work was done
in the plots(n=83 days during August 20, 2013-August 4, 2015). An observer approached the

plot slowly and walked the perimeter of the plot while recording any birds present.
Data analysis

For all the variables, we calculated the average values for each plote aagrassed
plot average of each variable on mangrove cowdte also calculated the standard deviation
(SD) of each microclimate variable for each plot, and we regressed the SDs on mangrove cover.
For all theregreSsios we examinedhe fit of linear, quadratic and piecewise models, and
selected regression models basethigher R (or adjusted B and significant Pralues. Data

analyses:were performed using JMBt&istical softwar€SAS Institute 2010

Results

Before the mangrove cover manipulation, the ten plots did not vary systematically in
wind speed (average an@stlard deviation), air temperature (average and standard deviation),
soil temperature (average and standard deviation), soil organic matter content, percentage cover
of salt marshevegetation, or plot mean B2yris dissimilarityof plant communities (Appendix
S1: Figure'S3-S8).

Wind speed was highest in plots with low mangrove cover, declining sharply from ~3.5
ms* at zero.mangrove cover to ~1.5 &t 33 %mangrove cover, and tteafterdeclining
gradually te==1 nmSat 100 % mangrove covéfigure 1a). Light interception by vegetation
increasedrom ~10% to ~70% as amgrove cover increased (Figure.lbaily average air (in
aboveground) and soil temperatures showed hump-shaped relationships with mangrove cover

with maxima at ~50-70% mangrove cover (Kglc, d).

This article is protected by copyright. All rights reserved



196
197
198
199
200
201
202
203

204
205
206
207
208
209
210
211
212
213

214
215
216
217
218
219

220
221
222
223

The standard deviation (SD) of wind speed declined shaglgangrove cover increased
from 0% to 33 %, and declined more gradually thereafter as mangrove cover increased to 100 %
(Figure 2a). Both the SDs of light interception by vegetation and air temperature (at 1 m
aboveground) showed hungpraped relationships withangrove coverKigure 2b, c). The SD of
soil temperature peaked in the plot with 22% mangrove cover, but there was no statistically
significant relationship between the SD of soil temperature and mangrove Eiguee 2d).Air
temperature patternddily average and SD) at 0vbaboveground showed hurspaped

patterns similartohose at In abovegroundHigure S9).

Salt'marsh plant@rimarily Batis maritima, Salicornia depressa (Sensu USDA 2015
Salicornialbigelovii, Spartina alterniflora, Sesuvium portulacastrumandLycium carolinianum)
rapidly expanded in the gaps between mangrove patches in the experimental plots during the two
years aftermthesmangrove cover manipulation. As of August 2014 the response of marsh
vegetation to mangrove cover change was non-linear, with marsh vegetation cover decreasing
sharply from ~80 % at zero mangrove cover to ~20 % at 50 % mangrove cover, and more
gradually if at all at higher mangrove cover (ig3a). The plot mean Bragurtis dissimilarity
(a measure-ef:ecommunity compositional variability ed{¥ersity) increased with mangrove
cover to a pealn the plot with 22 % mangrove cover, and then gradually declined as mangrove
cover furtherincreasggrigure 3b).

Wrack coveiin the plots decreasdbm ~13% to ~ 2% as mangrove cover increased
from zero 106100 % (data not shown). In plots with < 30 % mangrove cover, wrack penetrated 20
m or more into'the plots (Fige 39. In contrast, irplots with > 306 mangrove cover, wrack
never penetrated more than 10 m into the plots. Sediment accretion in plots declined steadily
with mangrove coverfrom ~15 mm yt in plots with< 25% mangrove cover to ~6 mniyin

plots with >.75.9% mangrove cov@figure 3d).

Soil oganic matter content (%) wa3-10 % in the plots before mangrove cover was
manipulated. In plots where mangroves were removed, soil organic content declined by up to 2.5
% on an absolute scale (i.Bnal soil organic content was frorb to ~9 %), with the loss of

organic matter proportional to the loss of mangrove c@vigure 3¢.
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The cumulative number of birds observed in the plots declined from ~90 to ~20 as
mangrove cover increased (Figufe. Bird counts declined sharply from zero to low (~33%)
mangrove cover, and plateaued at higher mangrove covers. The majority (84%) of the birds
observed were birds in the families Ardeidderons), Rallidae (rails)Threskiornithidae (ibis)
and Scolopacidae(sandpipers

Discussion

Effects of mangrove cover change on coastal wetland ecosystems

Ougpresults indicated that changes in mangrove cover, such as those that occur rapidly
with dieback fellowing hard freezes, or more gradually as mangroves expand during warm years,
canaffect microclimate conditionsyetland vegetation composition, wrack inputs, soil accretion
and soil organic content after ortlyo years. These effects, however, were often|imaar
functions of mangrove cover, indicating that the consequences of changes in mangrove

abundancenaynot simply be proportional to mangrove cover.

As.woody trees with relatively tall canopiesmpared to salt marsh plantsangroves
decrease wind'speed aaienuate wave energgnd thereby protect coastal areas (Alongi 2008,
Cochard'et7al™2008, Das and Vincent 2009, Das and Crépin 2013e<biis however,
revealed that the effect of mangroves on wind speed was lineanfunction of mangrove
cover. In particular, the majority of wind attenuation was achieved once mangrove cover reached
~30%, suggestinthat a relatively lowcover of mangrove trees may be sufficient to provide this

service.

Light interception by vegetation increased lineaa/mangrove covencreased
resulting inlowundestory solar radiation at highangrove cover, which is consistent with
observations.in other ecosystems with a gradient of woody plant cover (Breshears et al. 1997,
Martens et.ali20Qou et al. 2010, Royer et al. 2012). Our measurements of light interception
by vegetation,were taken during the mid-day and might not represent what happens early and
late in a day whethe sutight strikes the vegetatiost a low angle and scattered mangrove
plants may shade adjacent areas without mangroves. Although we modeled this relationship as a

straight line, light interception appeared to stabilize at just above 10 % at the lowest mangrove
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cover values. This represents the modest levels of light interception by the succulent salt marsh
vegetation (mostly Batis maritimathat grew where mangroves were completely removed.

Both daily average air temperaturetie mangrove canopy and soil temperature showed
hump-shaped-relationships withangrove coveMWe hypothesize that this wdse to the
combined/factors of decreasing wind cooling and increasing canopy shading as mangrove cover
increased. In plots with a lower mangrove cover, the relatively strong wind could carry away
heat from‘the surface to the overlying atmosphere (Chen et al. 1993), thereby maintaining
relativelylow air and soil temperatuseln contrast, in plots with higher mangrove cover, the
relatively streng shading effect of the mangrove canopy reduces the amount of solar radiation
reaching the ground surfagdbereby decreasing air and soil temperat(viartens et al. 20Q0
Villegas et.al=2010, Royer et al. 20125 a result, plots with intermediate mangrove cover had
the highest.temperatures. Aiamwming may benefit mangroves, which are tropical plants, and
this result/suggests that even partial cover of mangroves is sufficient to create a strong warming
effect andpossibly facilitate further mangrove expansion. Mangroves may benefit both from
warmer canditions, as shown here, which should increase photosynthesis rates in plants adapted
to high temperatures, and higher minimum temperatures, which should reduce the frequency of
dieback eventsi(Osland et al. 201&)d theelative importance of both in mediating mangrove

expansionremains to be explored.

Salt marsh plantexpanded intohe gaps between mangrove patatedgtively quickly
following the*mangrove cover manipulation. Two years after mangrove cover was manipulated,
the cover ofisalt marsh vegetation had increased eight-fold from an initial value of approximately
10 % to approximately 80 % in the zero percent mangrove plot, and was inversely related to
mangrove_cover across the range of plots. Thesdts were consistent with previous literature
showing that adult mangroves have strong competitive effects on salt marsh plants (Zhang et al.
2011). Similarly, large woody plants (trees or shrubs) are generally competitoraipant over
grasses in.savanna and desert ecosystems, although in both marshes and terrestrial grasslands,
grasses caninhibgrowth and survival of woody seedlings (Pieper 18tholes and Archer
1997, Forseth et al. 2001, Zhang et al. 2011, Guo et al. 2013). Marsh plants, however, did not
expand as much as might have been expected at intermediate mangrove cover (the relationship

between marsh plant cover and mangrove cover was concave), suggesting that the competitive
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282  effects of mangroves extend outward some distance from their canopies. Because mangroves are
283 taller than marsh plants, they cast shade some distance away from their canopies at low sun

284  anglesthereby reducing the availability of direct photosynthetic radiation to adjacent marsh

285  plants. Similarly, mangrove root systems may extend beyond their canopies to affect adjacent

286  marsh plants;just as shrubsother biomes can affect plants outside their car{Gagper et al.

287  2003). As a consequence, the growth of marsh plants in a mixed stand of marsh and mangrove

288  vegetation'may bkess than would be expected based only on mangrove cover.

289 Bothrwrack cover and wrack distribution range from the vimtsige decreased as

290 mangrove cover increased, indicating that fringe mangroves close to this wdtgr played an

291 importantirole in trapping wrack deposi8rack releases nutrients when it decompobtsns

292 etal 2006;.Ressi et al. 2011, Barreiro et al. 20&8ery et al. 2013), anddreased nutrient

293  availability.due‘to wrack trappgnby fringe mangroves could favor the growth of fringe

294  margroves Feller et al. 200,/Williams and Feagin 2010, Del Vecchio et al. 20183ulting in

295 greater aboveground biomassd more leaf litter, as well as substantial development of root

296 systems. Both accumulation of leaf litter and the soil binding effect of root systems would

297  contribute.to.vertidsaccretion ad thereby aincrease of soil elevatioMcKee et al. 2007

298  McKee 201). Patterns ofediment accretion were consistent with this scenario. In the presence
299  of mangrovessediment accretion rates in plots were low, sugugshat the majority of

300 sediments delivered from the channel by high tides were being trapped at the water’s edge

301  (unfortunately, none of the accretioreasurements were conducted atvry front edge of the

302 plots where this could have been documented). When mangroves were reseduaent

303 accretion rates.in the plots were thfell greater, indicating either that sedimeintsn the

304 channel.were being carried further into the plots, or that sediments eroding from the front edge of
305 the plots'weresbemtranslocatedarther backnto the plots. In either case, we hypothesize that
306 the outcome ofia transition from mangroves to marsh vegetation is that the levee at the front of
307 the plots will become less pronounced, and overall topographic heterogeneity in the plots

308 reduced. Because the levee creates a steep barrier between the channel and the wetland that is
309 overtopped only by the highest tides (authors’ personal observations), a reduction in the levee

310 might create easier and more direct access to thandefibr nekton from the adjacent channel.
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Soil organic mattedecreased when mangroves were rempsedgesting that mangrove
vegetation might increase soil organic matter content. This finding is consistent with previous
reports of relatively high nutrieétevels in mangrove versus salt mahsibitats (Duarte and
Cebrian 1996, Chmura et al. 2003, Donato et al. 2011, Osland et al. 2012, Yando et al. 2016). It
also mirrors.the similar patterns of higher soil organic matter under tree/shrub canopies versus
herbaceous vegetation in grasslands and savaBohkeginger et al. 88, Klopatek et al. 1998,
Cable et al:"2009). With much higher standifgjomass than salt marsh vegetation, mangroves
should produce ' more litter accumulation on the soil surface (Bhark and Small 2003, Price and
Morgan 2008, McKee 20)1Moreover with arelatively large surface area provided byitthe
foliage, mangreve canopies could also enhance atmospheric deposition of niWeattsefs et
al. 2001, DelLonge et al. 2008, Das et al. 2011), further favoring mangrove growth and organic

matter accumulatian

The marked difference in canopy structure between relatively short grasses and forbs that
characterize salt marshes and relatively tall woody vegetation of mangroves is likely to affect use
of intertidal wetlands by birds. We observed higher abundances of birds (mostly wading birds) in
plots with lower,mangrove cover, suggesting that these species prefer to avoid habitats
dominated by mangroves. Plots with a heterogeneous plant matrix may have provided an ideal
combinationef'marsh forage habitat and shelter among the mangrove shrubs. Birds use much
larger areas of the landscape than represented by our plots, and so it is possible that these results
would not'apply at the landscape scale. Previous observational stisdigsggest that wading
birds may decline as mangreviecrease, although responses in many cases are species- and
behaviorspecific (Wong et al. 1999, Goméfontes and Bayly 2010, Santiagdarcon et al.

2011).

In this gudy, we examined the relationships between each variable and mangrove cover
separatelyor clarity; however, some of the variables show correlated responses. Some of these
correlated responses could be due to indeperersimilar responses of these variables to
mangrove ceover changes. For example, cover of marsh vegetation and bird numbers might have
responded independently but in the same manner to mangrove cover. In othéheesesight
be causal relationships among these variables. For example, higher mangrove cover increased
wrack trapping, and higher temperatures in intermediate and high mangrove cc/eropilok
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likely increase the decomposition rate of deposited wrack, and together these processes might
increase the organic matter content in soil. Evaluating these potential mechanistic linkages is
beyond the scope of this manuscript, but it is important to note that theleariaat we

analyzed may not represent fully independent responses to mangrove cover.

Linear and non-linear effects of mangrove cover

Somesofithe variables, such as light interception, sediment accretion and changes in soil
organic matterscontent, showed more or less linear responses to mangrove cover changes. One
simple interpretation of these patternghig these variables respondembstly toconditions in
eachcell. For example, light interception at mid-day was a function of the vegetation canopy in
each cell,"and,was not affected by conditions in adjacent cells. If so, one would expect the sum of
the cel-level conditions to show linear changes across the experimental plots as the number of

cells with mangroves increased

In contrast, other variables, such as wind speed, temperature, salt marsh plant cover, plant
diversity, wrack.distribution and number of birds, showed lirwear relationships with
mangrove cover. In particulahe change in mangrove cover from zero to intermediate values of
30-50 % had'much greater effects on these variables than did the change in mangrove cover from
intermediate.values to 100 % coviis likely that these variables were responding to mangrove
cover at the level of the plot rather than the &&ihd speedfor example, is affected by any
upwind strueture, not just by structure in the immediate 8 3 m vicinity. Similarly, birds can
perceive and respond to the local habitat at a patch scale that is greatemtke® 8. In many
regards, a mixture of mangrove and salt marsh vegetation creates an ecosystem that functionally
resembles.a mangrogéand more than a salt marsh. As a result, many of the changes in
ecological processes and ecosystem services that occur with mangravaa@xpee likely to be
largely complete before the mangroves coalesce into a closedBtansuggests that the
consequences for ecosystem functioning of mangrove expansion into salt marshes might be

realizeds€arlier thaane might expect based solely on mangrove cover.

Increased variability at inter mediate mangrove cover

Many of the parameters that we measured were more variable at intermediate mangrove

cover than in stands of pure marsh or pure mangrove vegetation. Increased spatial or temporal
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variability of ecosystem propertieanbe associated with transitions in ecosystems from one

regime to anothemBfeshears 20Q6Previous studies have suggested that variability of certain
ecosystem properti€s.g, near ground solar radiation, transpiration and biogeochemistry) would
rise when an ecosystem experiences critical changes, such as shifts among vegetation types, and
likely peak.at.an intermediate point of the transi(ilopatek et al. 1998, Martens et al. 2000
Huxman et.al. 2005). In our study, the standard deviations (@Dight interception by

vegetation‘and air temperature showed hump-shaped relationships with mangrove cover, with the
maximumvalues nedhe intermediate range of mangrove cover. Also, the standard deviation

(SD) of sall temperature peaked at ~20% of mangroverc These results were consistent with
previous studies on ecosystem variabilibder regime shiftéBreshears 2006), showing that at
intermediate stages of the regime shdtween salt marsh anthngroves there is amcreased

variability in some ecosystem properties. In contrast, the standard deviation (SD) of wind speed
decreased as mangrove cover increasdtbctingthe greater roughness of mangoteat

redues wind fluctuations and can thus offer greatetection against storm damadgPsis and

Crépin 2023)=Plant community dissimilarity fneasure atompositional variabilityr -

diversity (Anderson et al. 2011) peaked in the intermediate range of mangrove cover (~30%),
where patehes of mangroves alternated with patches of salt marsh vegatatigh. mangrove

cover, community dissimilarity was low because all quadrats were dominated by mangroves, and
salt marsh vegetation was rare. These results, combined with the negative effect of mangroves on
cover of salt marsh plantsuggest thatigh levels of mangrove encroachment into marshes will
decrease pverall plant community diversity in coastal wet|ads if mangrove encroachment

is not complete. Similarlynigrasslands and savannas, woody encroachmentdefteeases

plant diversity(Brudvig 2010, Ratajczak et al. 2Q12mb et & 2014).

Takentogether, our results indicate that coastal wetlands that are transitioning between
marshes and mangroves are likely to experience high levels of temporal and spatial
heterogeneity. Tik increasedariability likely has importanécological consequences that

deserve further study.

Conclusions and management implications

Our experimental results demonstrated that the lséifteen salt marsdmdmangrove

vegetation can causapid (2 years or less) alterationsaimumber of wetland processes and
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400 attributes These results havemportant implications for coastal ecosystaranagement. The

401  shift between marshes and mangroves does not occur as an abrupt transition, but rather includes
402  areas or times where mixed stands occur. As a resaitagers need to consider not just the

403  extreme states of the regime shift, but also the intermediate states where the two vegetation types
404  co-occur Moreover, some of the ecosystem properties and functions responded to mangrove
405  cover non-linearly, which indicated that there might be optimal points that could achieve

406  multipleconservatiorgoals in coastal ecosystems experiencing regimes Bdtbier et al.

407  2008). Forexample, our results showed #iat30% cover, mangroviees exert substantial

408 effect in slowing down the wind speed close to the surfatealsofound that plant community

409  dissimilarity (B=diversity) peakedh the plot with 22 % mangrove cover. Thus, mans@ér

410 coastal ecosystems might be able to achieve the goals of wind protection and high biodiversity
411 by maintaining mangrove cover at around 20-30f%e primary goal was to maximize the

412 organic content o$oils, however, the optimum mangrove cover would be 100 %. Thus, the

413  “pbest” cover of mangroves will depend on which ecological functions provide the services that
414  are most valued by human societies. Therefore, a better understanding of how mangrove cover
415  affects various‘ecosystem services, coupled with an exfoliraiulation of management goals,

416 may enable.coastal managers to identify the best conservation strategies for local esosystem
417  Finally, thesshift between marsh and mangrove vegetation likely affects the community

418  composition of organisms at higher troplevels (such as marine invertebsaterrestrial

419  arthropodsnekton, bird and mamma)sand the changes in community composition and

420 microclimatetikely alter the rate of wetland carbon cycling. These possibilities need to be

421  explored by=additional rearch.
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Figure legends

Figure 1 Micraglimate conditions across the mangrove cover grad@nDdily average wind
speed (at-1.5 m aboveground, wind direction from shore into plots dolyiglit interception by
vegetation;€) daily average air temperature at 1 m abovegrout)djdily average soil
temperature. Data in paned,((c) and @) were collected during September 10, 2012-August
20, 2013.'Data in pandb) were collected in May 2013?Rr adjusted B and Rvalues
(piecewiseregression in pana);(linear regression in pandd)( and quadratic regressions in

panel p) and.)) are shown.

Figure 2 Standard deviation (SD) of)( wind speed (for wind direction from shore into plots
only), (b) lightsinterception by vegetatiorg)(air temperature ath aboveground, and soil
temperaturesacross the mangrove cover gradient. Data were collected during September 10,
2012-August20, 2013. Adjusted Rd P-values (piecewise regression in pamj Guadratic
regressions‘inypanelb)(and €)) are shown. No statistically significant relationshigs found

between SD of soil temperature and mangrove cover in pdnel (
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727  Figure 3 Ecosystenresponses of coastal wetlands to changes in mangrove cover in the study.
728 (@) Total percentage cover of salt marsh vegetation (multiple spe@ig®Ipt mean BrayCurtis

729  dissimilarity of plant community; jdNrack deposit distribution range from the watedge; ¢)

730 Sediment accretiong)l Change in soil organic matter content (%):Total number of birds

731  observed ingplotData in paneld), (b), (c) were collected in August 2014; data in paikl (

732 were collecteddn March 2015 (after 372 days of the deployment of the feldspar markers); data in
733 panel g)arethe difference between values in May 2012 before the mangrove removal and in
734  June 2014 after the mangrove removal; data in p&nekfe collected during each visit to the

735  study site/from August 20, 2013 to August 4, 2015(liRear regression in panel)(end €)) or

736  Adjusted B(quadratic regression in pane) @nd ); piecewise regression in pank) énd

737  (¢)),and Rvalues are shown.

(0]
5.0 5 240
o ) Adj R%=0.89 R
=0. S _
£ _ 4.0 i X 235
S E 3.0 £2 2301
e T &
o9
7 & 20 é’)é 225 1o /1,
>0 5 Adj R*=0.51
—] o) ‘ J] ;
g 10 & = 2 P=0.03
0.0 ‘ e =T 55
0 1020 30 40 50 60 70 80 90100 2 0 1020 30 40 50 60 70 80 90100
e 10 ? = 245 Adj R?=0.63
2 = 60 R2=0.96 3 c%i P=0 01.
= g5 o
g 2 40 g & 235 ° ®
E [
28 % 28280 > R N
o . 20 T B
-1 o ® o+ 225
104
0 22.0

0 1020 3040506070 80 90100 0 1020 3040 5060 70 80 90100
Mangrove cover (%) Mangrove cover (%)
738

739  Figurel

This article is protected by copyright. All rights reserved



740

741

__ 30
@
E 25
8 20
o)
@ 15
=
s 1.0
5
o 0.5
0.0
60
&
g g
S =40
g O
E ®30
= O
5 820
5 >
] 10
2 4
Figure2

(a)
Adj R2=0.90
P<0.01

0=10:20 30 40 50 60 70 80 90100
(b)

Adj R?= 0.80

® P<0.01

0..10.20 30 40 50 60 70 80 90100
Mangrove cover (%)

SD of air temperature at 1m

aboveground (°C)

SD of soil temperature (°C)

7.5

7.0

6.5

6.0

55

6.0

5.5

5.0

4.5

4.0

(c)

Adj R?=0.67
P<0.01

(d)

0 1020 30405060 70 80 90100
Mangrove cover (%)

This article is protected by copyright. All rights reserved



742

743

100

£ OO @
o o o

Total percentage cover of
marsh vegetation (%)
)
o

o

. Adj R*= 0.87
P<0.01

1.0
0.8(]
0.6
0.4,
0.2

Bray-Curtis dissimilarity
of plant community

0.0

0"10"20 30 40 50 60 70 80 90100
(b)

Adj R*= 0.57
. P=0.04

404

30

from water edge (m)

Wrack distribution range

0=10:20 30 40 50 60 70 80 90100

(c)

Adj R? = 0.59
. P=0.04

Figure3

0 1020 3040 5060 70 80 90100
Mangrove cover (%)

Change in soil organic

Total number of birds

m)

N
(8]

Sediment accretion (m

matter content (%)

O
(=

-0.5

RN
o o

NN
o o

&
<

100

observed

80
60
40
20

" R?=0.61
P< 0.01

0 102030405060 708090100

(e)

R%=0.72
P<0.01

0 1020 30 40 50 60 70 80 90100
(f)

Adj R?*=0.92
P<0.01

0 1020 3040506070 80 90100
Mangrove cover (%)

This article is protected by copyright. All rights reserved



